|
个人信息:Personal Information
教授 博士生导师 硕士生导师
性别:女
毕业院校:重庆大学
学历:博士研究生毕业
学位:工学博士
在职信息:在岗
所在单位:人工智能学院
办公地点:重庆邮电大学信息科技大厦1906室
联系电话:86-23-62461043(O)
电子邮箱:
于洪简历
发布时间:2019-02-25 点击次数:
于洪,教授,博士生导师。伊出生于重庆巫溪,成长于重庆云阳,在2003年获得重庆大学计算机软件与理论博士学位。在人生的第三个鼠年于2008年访问加拿大University of Regina。是重庆市高校中青年骨干教师,入选重庆市“英才计划”。现任“大数据智能计算”示范型国家国际科技合作基地副主任,大数据智能计算创新团队副主任,智能科学与技术专业(国家级一流专业)负责人,全国大学生智能设计竞赛评审专家,国际粗糙集学会秘书长,中国人工智能学会以及中国计算机学会会员。
于洪教授在粗糙集、可信人工智能、机器学习、认知计算、粗糙集、三支聚类、知识自动化、工业大数据、数据挖掘和智能信息处理等领域的研究工作,入选斯坦福大学2020年发布的“全球前2%顶尖科学家榜单”。出版专著多部,在IEEE TKDE、ACM SIGKDD等期刊/会议上发表SCI/EI论文80余篇,论文获得国际会议最佳论文奖,论文入选Top5000——中国精品科技期刊顶尖学术论文。承担了包括国家自然科学基金重点项目在内的10余项国家级项目。担任了JRS和IJCRS等系列国际学术会议程序委员会共同主席,是ADMA 、CCECE、AMLTA、RSKT、RSCTC等系列国际学术会议的程序委员会委员。获得重庆市自然科学技术奖一等奖1次、二等奖1次,重庆市教学成果奖一等奖1次。
于洪教授是重庆邮电大学智能科学与技术专业负责人,中国人工智能学会教育工作委员会常务委员,全国本科“智能科学与技术”专业教学指导工作组成员。于洪教授主要讲授本科生、研究生的“算法设计与分析”、“数据结构”、“Rough集与数据挖掘”、“计算理论基础”、“人工智能”等课程。获得过“优秀班导师”等称号,指导本科生参加国家级科技竞赛活动获奖多次。
教育经历
1.1999/9–2003/12,重庆大学,计算机软件与理论,博士,导师:吴中福
2.1994/9–1997/5,重庆邮电学院,信号与信息处理,硕士,导师:葛君伟
3.1990/9–1994/6,南昌航空工业学院,物理学,学士
科研与学术工作经历
1.2015/12-至今,重庆邮电大学,计算机科学与技术学院,博导
2.2014/9-2015/3,加拿大University of Regina,访问学者
3.2013/11-至今,重庆邮电大学,计算机科学与技术学院,教授
4.2007/12-2008/12,加拿大University of Regina,访问学者
主持的主要科研项目
1. 科技部重点研发项目课题2021YFF0704103:多病种及人群特征卫生健康科学大数据的挖掘模型与算法,2021/12-2025/11。502.8万元
2. 国家自然科学基金重点项目:62136002,融合介观尺度知识表征的认知机器学习理论与方法,2022/01-2026/12。300.00万元
3. 国家自然科学基金面上项目:61876027,工业大数据的三支多粒度智能决策模型与方法,2019/01/01-2022/12/31 62万
4. 重庆英才(创新领军人才)计划项目CQYC20210302397:融合认知的智能计算,2022/01/01-2024/12/31,40万
5. 国家自然科学基金重点项目子任务:61533020,基于大数据和云计算的铝电解生成知识自动化决策系统设计方法与应用验证,2016/01-2020/12。340.00万元 负责68万
6. 国家自然科学基金应急管理项目(重点项目)子任务:61751312,流程工业过程操作优化决策的知识自动化方法及应用(The knowledge automation method of process industry process operation optimization decision and its application),2018/01-2020/12。 220.00万元 负责55万
7. 国家自然科学基金面上项目:61379114 三支决策聚类理论模型与方法研究 2014/01/01-2017/12/31 73万 结题
研究兴趣
可信人工智能、机器学习、认知计算、粗糙集、三支决策、三支聚类、工业大数据、知识自动化、智能决策、知识发现、聚类分析、Web智能、智能推荐、数据挖掘、智能信息处理等
教学兴趣
算法设计与分析、数据结构、Rough集与数据挖掘、计算理论基础、人工智能等
Some Publications
1. Hong Yu, Jia Tang, Guoyin Wang, Xinbo Gao. A Novel Multi-View Clustering Method for Unknown Mapping Relationships Between Cross-View Samples// In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21), August 14-18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages, 2075-2083. DOI 10.1145/3447548.3467294
2. Hong Yu, Qian Yang, Guoyin Wang, Yongfang Xie. A Novel Discriminative Dictionary Pair Learning Constrained by Ordinal Locality for Mixed Frequency Data Classification. IEEE Transactions on Knowledge and Data Engineering, 2020. DOI 10.1109/TKDE.2020.3046114.
3. Hong Yu, Zhao Fu, Guoyin Wang, Yongfang Xie & Jie Li, A Multi-objective optimization algorithm based on dynamic user-preference information,10.1007/s00607-021-00995-x,Computing Published: 25 August 2021
4. ChaoFan He, Hong Yu, SongEn Gu, Wei Zhang. A multi-granularity information-based method for learning high-dimensional Bayesian network structures. Cognitive Computation, 2021, (1): 1-13.
5. Xiangpeng Li , Hong Yu , Yongfang Xie, et al. Attention-based novel neural network for mixed frequency data. CAAI Transactions on Intelligence Technology, 2021, 6(3):301-311. DOI 10.1049/ cit2.12013.
6. Zhihan Peng, Hong Yu, Xiuyi Jia. Path-based reasoning with K-nearest neighbor and position embedding for knowledge graph completion. Journal of Intelligent Information Systems (2021): 1-21. 在线出版,2021.9.30,DOI: 10.1007/s10844-021-00671-8
7. Hong Yu, Xincheng Wang, Guoyin Wang, Xianhua Zeng. An active three-way clustering method via low-rank matrices for multi-view data. Information Sciences, 2020, 507: 823-839. ESI高被引、ESI热点
8. Hong Yu, Deniu He, Guoyin Wang, Jie Li, Yongfang Xie. Big Data for Intelligent Decision Making. Acta Automatica Sinica, 2020, 46(5): 878-896.
于洪, 何德牛, 王国胤, 李劼, 谢永芳. 大数据智能决策. 自动化学报, 2020, 46(5): 878-896.
9. Hong Yu, Jing Xiong, Xiaoxia Zhang. Multi-view clustering by exploring complex mapping relationship between views. Pattern Recognition Letters, 2020, 138: 230-236.
10. Hong Yu, Zhihua Chang, Guoyin Wang, Xiaofang Chen. An efficient three-way clustering algorithm based on gravitational search. International Journal of Machine Learning and Cybernetics, 2020, 11(5): 1003-1016.
11. Yongpeng Wang, Hong Yu, Guoyin Wang, Yongfang Xie. Cross-Domain Recommendation Based on Sentiment Analysis and Latent Feature Mapping. Entropy, 2020, 22(4): 473.
12. Hong Yu, Yun Chen, Pawan Lingras, Guoyin Wang. A three-way cluster ensemble approach for large-scale data. International Journal of Approximate Reasoning, 2019, 115: 32-49.
13. Hong Yu, Bing Zhou, Mingyao Deng, Feng Hu. Tag recommendation method in folksonomy based on user tagging status, Journal of Intelligent Information Systems, 2018, 50(3): 479-500.
14. Hong Yu, Peng Jiao, Yiyu Yao, Guoyin Wang. Detecting and refining overlapping regions in complex networks with three-way decisions, Information Sciences, 2016, 373: 21-41.
15. Hong Yu, Cong Zhang, Guoyin Wang. A tree-based incremental overlapping clustering method using the three-way decision theory, Knowledge-Based Systems, 2016, 91: 189-203.
16. Hong Yu, Guoyin Wang, Yiyu Yao. Current Research and Future Perspectives on Decision-Theoretic Rough Sets. Chinese Journal of Computers, 2015, 38(8): 1628-1639.
于洪, 王国胤, 姚一豫. 决策粗糙集理论研究现状与展望, 计算机学报, 2015, 38(8): 1628-1639.
17. Hong Yu, Junhua Li. Algorithm to Solve the Cold-Start Problem in New Item Recommendations. Journal of Software, 2015, 26(6): 1395−1408.
于洪, 李俊华. 一种解决新项目冷启动问题的推荐算法. 软件学报, 2015, 26(6): 1395−1408.
18. Hong Yu, Zhanguo Liu, Guoyin Wang. An automatic method to determine the number of clusters using decision-theoretic rough set. International Journal of Approximate Reasoning, 2014, 55(1): 101-115.
19. Hong Yu, Qingfeng Zhou, Man Liu. A Dynamic Composite Web Services Selection Method With QoS-Aware Based on AND/OR Graph. International Journal of Computational Intelligence Systems, 2014, 7(4): 660-675.
20. Xi'ao Ma, Guoyin Wang, Hong Yu, Tianrui Li. Decision region distribution preservation reduction in decision-theoretic rough set model. Information Sciences, 2014, 278: 614-640.
21. Hong Yu, Mingyao Deng, Feng Hu. Tag Recommendation Method Considering User Tagging Status. Pattern Recognition and Artificial Intelligence, 2014, 27(8): 673-682.
于洪, 邓明瑶, 胡峰. 考虑用户标注状态的标签推荐方法. 模式识别与人工智能, 2014, 27(8): 673-682.
22. Hong Yu, Xian Yang. Analyzing and Modeling of Information Propagation on Microblogging. Journal of System Simulation, 2013, 25(12): 2973-2978.
于洪, 杨显. 微博中信息传播特性分析及模型仿真研究. 系统仿真学报, 2013, 25(12): 2973-2978.
23. Hong Yu, Shuangshuang Chu, Dachun Yang. Autonomous Knowledge-oriented Clustering Using Decision-Theoretic Rough Set Theory. Fundamenta Informaticae, 2012, 115(2-3): 141-156.
24. Hong Yu, Xian Yang. Studying on The Node’s Influence and Propagation Path Modes in Microblogging. Journal on Communications, 2012, 33(Z1): 96-102.
于洪, 杨显. 微博中节点影响力度量与传播路径模式研究. 通信学报, 2012, 33(Z1): 96-102.
25. Hong Yu, Dachun Yang. Approach to Solving Attribute Reductions with Ant Colony Optimization. Pattern Recognition and Artificial Intelligence, 2011, 24(2): 176-184.
于洪, 杨大春. 基于蚁群优化的多个属性约简的求解方法. 模式识别与人工智能, 2011, 24(2): 176-184.
26. Jiangnan Gong, Hong Yu, Cheng Huang. PS-AENN based prediction model of billet temperature in industrial steelmaking process// Victor Chang, Muthu Ramachandran, Víctor Méndez Muñoz (eds): International Conference on Industrial IoT, Big Data and Supply Chain, SIST 218, Macao, SAR, China, September 15-17, 2020. Springer, Singapore, 2021:23-31.
27. Hong Yu. Three-Way Decisions and Three-Way Clustering// Hung Son Nguyen, Quang-Thuy Ha, Tianrui Li, Malgorzata Przybyla-Kasperek (eds): International Joint Conference on Rough Sets (IJCRS 2018), LNAI 11103, Quy Nhon, Vietnam, August 20-24, 2018. Springer, Cham, 2018:13-28.
28. Hong Yu, Zuoyu Sun, Guoyin Wang, Jie Li, Yongfang Xie, Gang Guo. A Multi-granular Hierarchical Evaluation Model for Multiple Criteria Three Sorting// Hanghang Tong, Zhenhui (Jessie) Li, Feida Zhu, Jeffrey Yu (eds): 2018 IEEE International Conference on Data Mining Workshops (ICDMW 2018), Singapore, November 17-20, 2018. IEEE, 2018: 487-494.
29. Hong Yu, Jisen Yang, Xiaofang Chen, Zhong Zou, Guoyin Wang, Tao Sang. Soft Measuring Model of Superheat Degree in the Aluminum Electrolysis Production// Naoki Abe, Huan Liu, Calton Pu, Xiaohua Hu, Nesreen Ahmed, Mu Qiao, Yang Song, Donald Kossmann, Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, Jeffrey Saltz (eds): 2018 IEEE International Conference on Big Data (ICBD 2018), Seattle, WA, USA, December 10-13, 2018. IEEE, 2018: 2679-2684.
30. Hong Yu. A Framework of Three-Way Cluster Analysis// Lech Polkowski, Yiyu Yao, Piotr Artiemjew, Davide Ciucci, Dun Liu, Dominik Slezak, Beata Zielosko (eds): International Joint Conference on Rough Sets (IJCRS 2017), LNAI 10314, Olsztyn, Poland, July 3-7, 2017. Springer, Cham, 2017: 300-312.
Published Books and Chapters
1. 刘盾, 贾修一, 李华雄, 闵帆, 于洪. 三支决策与大数据分析. 科学出版社, 北京, 2020. ISBN: 978-7-03-065580-6Dun Liu, Xiuyi Jia, Huaxiong Li, Fan Min, Hong Yu. Three-Way Decisions and Big Data Analysis, Science Press, Beijing, 2020.
2. 于洪, 王国胤. 三支决策聚类. 于洪, 王国胤, 李天瑞, 梁吉业, 苗夺谦, 姚一豫. 三支决策: 复杂问题求解方法与实践[M], 北京: 科学出版社, 2015.
Hong Yu, Guoyin Wang. Three-way Decision Clustering. (Chapter 6) in Hong Yu, Guoyin Wang, Tianrui Li, Jiye Liang, Duoqian Miao, Yiyu Yao. Three-Way Decisions: Methods and Practices for Complex Problem Solving[M], Science Press, Beijing, 2015.
3. 于洪,王滢,王国胤. 基于三支决策的重叠聚类方法. 刘盾,李天瑞,苗夺谦,王国胤,梁吉业编著. 三支决策与粒计算[M]. 北京: 科学出版社.2013 (2013年7月, ISBN 978-7-03-038193-4, 第11章).
Hong Yu, Ying Wang, Guoyin Wang. Granular Computing Based on Three-way Decision. (Chapter 11), in Dun Liu, Tianrui Li, Duoqian Miao, Guoyin Wang, Jiye Liang. Three-way Decisions and Granular Computing[M]. Science Press, Beijing, China, pp237-267, 2013.
4. 于洪,刘占国,王国胤. 基于决策粗糙集的聚类数自动确定方法. 贾修一,商琳,周献中,梁吉业,苗夺谦,王国胤,李天瑞,张燕平编著. 三支决策理论与应用[M], 南京:南京大学出版社.2012(2012年10月, 第12章).
Hong Yu, Zhanguo Liu, Guoyin Wang. An Automatic Method to Determine The Clustering Number Decision Based on Rough Set. (Chapter 12), in Xiuyi Jia, Lin Shang, Xianzhong Zhou, Jiye Liang, Duoqian Miao, Guoyin Wang, Tianrui Li, Yanping Zhang. Three-way Decision’Theory and Application[M]. Nanjing:Nanjing University Press. Nanjing, China, 192-212, 2012.
5. 于洪,王国胤. 基于决策粗糙集的自动聚类方法. 李华雄, 周献中,李天瑞,王国胤,苗夺谦,姚一豫编著. 决策粗糙集理论及其研究进展[M]. 北京:科学出版社. 2011(2011年11月,第5章).
Hong Yu,Guoyin Wang. Autonomous Clustering Method Based on Decision-theoretic Rough Set(chapter 5), in Huaxiong Li, Xianzhong Zhou, Tianrui Li,Guoyin Wang,Duoqian Miao,Yiyu Yao (Eds.), Three-way Decisions Theory and Research Advances[M]. Beijing: Science Press. 92-114, 2011.
Chinese Invention Patents
1. 于洪,杨倩,胡峰,王国胤,张晓霞,面向混合采样工业大数据的基于多视图字典学习分类方法,专利号:ZL 2019 1 0429746.7,授权公告日:2021年5月18日
2. 于洪,陈云,胡峰,王国胤,胡军,基于Spark平台采用两次评价的加权选择集成三支聚类方法,专利号:ZL 2017 1 0548072.3,授权公告日:2021年2月9日
