刘柯

个人信息:Personal Information

副教授 硕士生导师

性别:男

毕业院校:华南理工大学

学历:博士研究生毕业

学位:工学博士

在职信息:在岗

所在单位:人工智能学院

办公地点:信科大厦1902

电子邮箱:

联系方式Other Contact Information

邮箱 :

扫描关注

个人简介:Personal Profile


刘柯,男,工学博士,副教授,博士生/硕士生导师,重庆市巴渝青年学者,中国人工智能学会人工智能基础专委会通讯委员,中国人工智能学会脑科学与人工智能专委会委员,入选脑机接口产业联盟“脑机接口‘青百荟’”。2016年12月毕业于华南理工大学自动化科学与工程学院,获模式识别与智能系统专业博士学位。2019-2020年,南洋理工大学计算机科学与工程学院访问学者。主要从事脑机接口和脑疾病精准诊疗研究。主持国家自然科学基金面上项目等国家级项目3项、省部级项目4项(含省部级重点项目1项)、中国航天科工集团脑机创新中心“航脑”青年学者基金1项。担任SCI期刊Neurocomputing副主编, Brain Informatics 2025、IARCE2025专题主席,以及ICIST 2018、 Brain Informatics (BI 2019、2023、2024、2025)等多个国际学术会议的程序委员,担任NeuroImage、Human Brain Mapping, IEEE TAFFC、IEEE TNSRE、IEEE JBHI、IEEE TCDS、Journal of Neural Engineering、Neurocomputing等权威期刊审稿人。


个人学术主页:ResearchGate

              Ke Liu‬ - ‪Google 学术搜索‬


【招生要求】:勤奋刻苦,有较强的学习主动性和团队意识,具备较强的数学基础、编程能力和英语读写能力,对脑机接口、脑疾病数据分析具有浓厚兴趣。

【招生计划】:博士2名(140500智能科学与技术学术型博士1名,085410电子信息-人工智能专博1名);

              硕士6名(智能科学与技术、电子信息(人工智能,大数据技术与工程、计算机技术)、计算机科学与技术)。

主持项目:


[1] 国家自然科学基金面上项目,62476034,面向精细运动想象的脑电溯源及解码方法研究,2025.01-2028.12,主持,在研;

[2] 国家自然科学基金联合基金项目,U24A20338, 基于高分辨率脑源成像的脑机交互理论与方法研究,2025.01-2028.12,参与(重邮任务负责人),在研;

[3] 重庆市教委科技项目重点项目,KJZD-K202500607,基于高分辨率脑电源成像的抑郁症精准诊断方法研究,2025.07-2028.06,主持,在研;

[4] 重庆市科技局面上项目,CSTB2022NSCQ-MSX0291,基于脑电溯源技术的情绪解码研究,2022-08至2025-07,主持,已结题; 

[5] 国家自然科学基金青年科学基金项目,61703065,基于EEG-fMRI的脑功能成像方法及其应用研究,2018.01-2020.12,主持,已结题;

[6] 重庆市基础与前沿研究类项目cstc2018jcyjAX0151,基于EEG-fMRI 脑功能成像的脑网络分析方法研究,2018.07-2021.06主持,已结题;

[7] 重庆市教委科技项目青年项目KJQN201800612,基于时空约束的EEG弥散源成像及脑功能网络方法研究,2018.07-2021.06主持,已结题。



发表论文:

2025

[1] K. Liu, Hang Jiang, Hu Yang, Jun Zhang, Zhenghui Gu, Zhuliang Yu, Yu Zhang(*), Bin Xiao (*), Wei Wu(*). ADMM-ESINet: A Deep Unrolling Network for EEG Extended Source Imaging [J], IEEE Journal of Biomedical and Health Informatics vol. 29, no. 10, pp. 7262-7273, Oct. 2025. DOI: 10.1109/JBHI.2025.3568648(SCI, 中科院JCR 二区TOP,影响因子: 6.8)(Code: https://github.com/hangj-cache/ADMM-ESINet).

[2] Ke Liu,Xin Xing, Tao Yang,Zhuliang Yu, Bin Xiao, Guoyin Wang(*), Wei Wu(*)DMSACNN: Deep Multiscale Attentional Convolutional Neural Network for EEG-Based Motor Decoding [J],  IEEE Journal of Biomedical and Health Informatics,  vol. 29, no. 7, pp. 4884-4896, July 2025. DOI: 10.1109/JBHI.2025.3546288 (SCI, 中科院JCR 二区TOP,影响因子: 6.8)(Code: https://github.com/xingxin-99/DMSANet.git)

[3] Shu Peng, Hongyu Li, Yujie Deng, Hong Yu, Weibo Yi(*), Ke Liu (共同通讯作者)SSSI-L2p: An EEG extended source imaging algorithm based on the structured sparse regularization with L2p-norm [J] . Neurocomputing, vol. 639, p. 130250, July 2025. DOI: 10.1016/j.neucom.2025.130250 (SCI, 中科院JCR 二区,影响因子: 6.5) (Code:  https://github.com/Mashirops/SSSI-L2p.git)

[4] H. Jiang, K. Liu (通讯作者), H. Yu and G. Wang, "VSSI-L1N: EEG Extended Source Imaging Based on Variation Sparsity and Nuclear-norm Regularization," 2024 IEEE International Conference on Medical Artificial Intelligence (MedAI), Chongqing, China, 2024, pp. 526-534, doi: 10.1109/MedAI62885.2024.00075

[5] Wang, Y., Wang, Y., Yu, H., Liu, K(通讯作者) (2025). Steering Angle Prediction Based on Travelable Regions and Bio-Inspired Neural Circuit Policy. In Rough Sets: International Joint Conference, IJCRS 2025, Chongqing, China, May 11–13, 2025, Proceedings, Part III. Springer-Verlag, Berlin, Heidelberg, 321–334. https://doi.org/10.1007/978-3-031-92741-6_24.  (Code:  https://github.com/wyl121/TLNBm-NCP)


2024

[1] Ke Liu, Xin Luo, Wenrui Zhu, Zhuliang Yu, Hong Yu, Bin Xiao, Wei Wu(*)Enhancing EEG-Based Cross-Subject Emotion Recognition via Adaptive Source Joint Domain Adaptation[J]. IEEE Transactions on Affective Computing, vol. 16, no. 3, pp. 1419-1430, July-Sept. 2025, doi: 10.1109/TAFFC.2024.3514635.  (SCI, 中科院JCR 一区Top,影响因子: 9.8) (Code: https://github.com/Pam098/ASJDA)

[2] Y. Wang, Wei Zhang, Ke Liu (通讯作者), Wei Wu, Feng Hu, Hong Yu, Guoyin Wang, Dynamic Emotion-Dependent Network with Relational Subgraph Interaction for Multimodal Emotion Recognition [J]. IEEE Transactions on Affective Computing, vol. 16, no. 2, pp. 712-725, April-June 2025, doi: 10.1109/TAFFC.2024.3461148 (SCI, 中科院JCR 区Top,影响因子: 9.8)

[3] Ke Liu, Tao Yang, Zhuliang Yu, Weibo Yi, Hong Yu, Guoyin Wang, Wei Wu(*). MSVTNet: Multi-Scale Vision Transformer Neural Network for EEG-Based Motor Imagery Decoding [J]. IEEE Journal of Biomedical and Health Informatics, vol. 28, no. 12, pp. 7126-7137, Dec. 2024. DOI: 10.1109/JBHI.2024.3450753  (SCI, 中科院JCR 二区TOP,影响因子: 6.7)(Code: https://github.com/SheepTAO/MSVTNet)

[4] Liu Ke, Peng Shu, Chengzhi Liang, Zhuliang Yu (*), Bin Xiao, Guoyin Wang, Wei Wu(*) . VSSI-GGD: A Variation Sparse EEG Source Imaging Approach Based on Generalized Gaussian Distribution [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 1524-1534.  (SCI, 中科院JCR 二区,影响因子: 4.9)(Code:  https://github.com/Mashirops/VSSI-GGD.git)

[5] 刘柯,黄玉柱,邓欣,.采用多任务特征融合的脑电情绪识别方法[J].智能系统学报,2024,19(3):610-618. [doi:10.11992/tis.202206023]

[6] Peng, S., Qi, F., Yu, H., Liu, K. (通讯作者)(2024). EEG Extended Source Imaging with Variation Sparsity and Lp-Norm Constraint. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science, vol 14474. Springer, Singapore. https://doi.org/10.1007/978-981-99-9119-8_45



2023

[1] K. Liu, M. Yang, Z. Yu, G. Wang and W. Wu  (*). FBMSNet: A Filter-Bank Multi-Scale Convolutional Neural Network for EEG-Based Motor Imagery Decoding. IEEE Transactions on Biomedical Engineering, 2023, 70(2): 436-445. DOI: 10.1109/TBME.2022.3193277. (SCI, 中科院JCR二区,影响因子:4.756, Code:deep-bci/FBMSNet: This is the PyTorch implementation of the FBMSNet architecture for EEG-MI classification. (github.com))

[2] K. Liu, Qin Lai, Peiyang Li, Zhuliang Yu, Bin Xiao, Cuntai Guan, Wei Wu  (*), Robust Bayesian Estimation of EEG-Based Brain Causality Networks[J]. IEEE Transactions on Biomedical Engineering, 2023, 70(6): 1879-1890. DOI: 10.1109/TBME.2022.3231627. (SCI , 中科院JCR二区,影响因子:4.756, code:https://github.com/BrainNetworkL/brainNetwork)

[3] Liu Ke, Wang Zhen, Yu Zhuliang, Xiao Bin, Yu Hong, Wu Wei  (*). WRA-MTSI: A Robust Extended Source Imaging Algorithm Based on Multi-Trial EEG. IEEE Transactions on Biomedical Engineering, 2023, 70(10): 2809-2821. DOI: 10.1109/TBME.2023.3265376.SCI, 中科院JCR二区,影响因子:4.756, Code: https://github.com/Zhen715code/WRA-MTSI.git)

[4] K. Liu, M. Yang, X. Xing, Z. Yu, and W. Wu  (*). SincMSNet: A Sinc filter convolutional neural network for EEG motor imagery classification.  Journal of Neural Engineering, 2023, 20(5): 056024. DOI: 10.1088/1741-2552/acf7f4  (SCI, 中科院JCR二区,影响因子:4, Code: https://github.com/Want2Vanish/SincMSNet)

 

2022

[1] Yao H, Liu K (通讯作者), Deng X, et al. FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection[J]. Journal of Neuroscience Methods, 2022, 379: 109674. DOI: 10.1016/j.jneumeth.2022.109674.  (SCI, 中科院JCR四区,影响因子:2.987, Code:deep-bci/FB-EEGNet: a deep neural network for ssvep target recognition. (github.com))

[2] 刘柯(第一作者,通讯作者), 杨东, 邓欣. 基于 fMRI 功能网络和贝叶斯矩阵分解的脑电源成像方法[J]. 电子与信息学报, 2022, 4410: 3447-3457. DOI: 10.11999/JEIT210764.

[3]  李振华,刘柯(通讯作者),邓欣. 采用最小二乘转换的在线SSVEP字符输入系统设计与实现[J].重庆邮电大学学报(自然科学版)2022345):859-868.

[4] Gexin Huang; Ke Liu; Jiawen Liang; Chang Cai; Zheng Hui Gu; Feifei Qi; Yuanqing Li; Zhu Liang Yu; Wei Wu, "Electromagnetic Source Imaging via a Data-Synthesis-Based Convolutional Encoder–Decoder Network," in IEEE Transactions on Neural Networks and Learning Systems, 2022, doi: 10.1109/TNNLS.2022.3209925.

[5] Q. Yang, M. Yang, K. Liu(通讯作者) and X. Deng, "Enhancing EEG Motor Imagery Decoding Performance via Deep Temporal-domain Information Extraction," 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), 2022, pp. 420-424, DOI: 10.1109/DDCLS55054.2022.9858575

[6] J. Huang, K. Liu (通讯作者)  and X. Deng, "EEG Motor Imagery Decoding Based on Common Spatial Pattern and Ensemble Learning at the Source Space," 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), 2022, pp. 189-194, DOI: 10.1109/DDCLS55054.2022.9858453


2021年及以前

[1] K. Liu, Z. L. Yu, W. Wu, Z. Gu, and Y. Li, "STRAPS: A Fully Data-Driven Spatio-Temporally Regularized Algorithm for M/EEG Patch Source Imaging," International Journal of Neural Systems, vol. 25, p. 1550016, Jun 2015. DOI: 10.1142/S0129065715500161 .  (SCI, 中科院JCR一区TOP,影响因子:4.580) 

[2] K. Liu, Z. L. Yu, W. Wu, Z. Gu, Y. Li, and S. Nagarajan, "Bayesian electromagnetic spatio-temporal imaging of extended sources with Markov Random Field and temporal basis expansion,”NeuroImage, vol. 139, pp. 385-404, Oct 2016.DOI: 10.1016/j.neuroimage.2016.06.027 .  (SCI, 中科院JCR二区TOP,影响因子:5.421)

[3] K. LiuZ. L. Yu, W. Wu, Z. Gu, Y. Li, and S. Nagarajan, “Variation Sparse Source Imaging based on Conditional Mean for Electromagnetic Extended Sources, " Neurocomputing, vol. 313, pp. 96-110, 2018. DOI:10.1016/j.neucom.2018.06.004.  (SCI, 中科院JCR 二区,影响因子: 3.241)

[4] K. LiuZ. L. Yu, W. Wu, Z. Gu, J. Zhang, L. Cen, S. Nagarajan and Y. Li, "Bayesian Electromagnetic Spatio-Temporal Imaging of Extended Sources based on Matrix Factorization," IEEE Transactions on Biomedical Engineering,2019. DOI:10.1109/TBME.2018.2890291.  (SCI, 中科院JCR二区,影响因子:4.288

[5] Ke Liu, Zhu Liang Yu, Wei Wu, Zhenghui Gu, Yuanqing Li, "Imaging Brain Extended Sources from EEG/MEG based on Variation Sparsity using Automatic Relevance Determination," Neurocomputing, 2020. DOI: 10.1016/j.neucom.2020.01.038 .  (SCI, 中科院JCR 二区TOP,影响因子: 5.719)

[6] Zhenhua Li (学生), Ke Liu (通讯作者) Xin Deng, Guoyin Wang, "Spatial fusion of maximum signal fraction analysis for frequency recognition in SSVEP-based BCI," Biomedical Signal Processing and Control, vol. 61, 2020. DOI: 10.1016/j.bspc.2020.102042 . (SCI, 中科院JCR三区,影响因子:2.943)

[7] Furong Xu (学生), Ke Liu (通讯作者)Zhuliang Yu, Xin Deng, Guoyin Wang (通讯作者), "EEG Extended Source Imaging with Structured Sparsity and L1-norm Residual," Neural Computing & Applications, 2021. DOI: 10.1007/s00521-020-05603-1  (SCI, 中科院JCR二区,影响因子:4.774)

[8] K. Liu, Z.L. Yu, W. Wu, X. Chen, Z. Gu, C. Guan, fMRI-SI-STBF: An fMRI-Informed Bayesian Electromagnetic Spatio-Temporal Extended Source Imaging, Neurocomputing (2021), DOI: https:// doi.org/10.1016/j.neucom.2021.06.066. (SCI, 中科院JCR二区TOP,影响因子:5.779, Code:deep-bci/fMRI-SI-STBF: Code for fMRI-Informed Bayesian Electromagnetic Spatio-Temporal Extended Source Imaging (github.com))

[9] 刘柯(第一作者,通讯作者),张孝(学生),李沛洋,陈多,王国胤, 基于脑功能网络和共空间模式分析的脑电情绪识别[J/OL].计算机应用研究:1-7[2020-12-24].https://doi.org/10.19734/j.issn.1001-3695.2020.07.0181.

[10] 刘柯, 俞祝良, 吴畏,. 基于贝叶斯推断的脑源定位估计技术及应用[J]. 人工智能, 2021, 000(006):P.62-69. DOI: 10.16453/j.cnki.ISSN2096-5036.2021.06.007

[11] K. Liu, Z. L. Yu, W. Wu, Z. Gu, J. Zhang, L. Cen, and Y. Li, "Bayesian spatio-temporal decomposition for electromagnetic imaging of extended sources based on Destrieux atlas," 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2018, pp. 639–643. DOI: 10.1109/ICIEA.2018.8397793(最佳会议论文提名)

[12] Xu F, Liu K (通讯作者), Deng X, et al. "Imaging EEG Extended Sources Based on Variation Sparsity with L1-norm Residual." International Conference on Brain Informatics. Springer, Cham, 2019. DOI: 10.1007/978-3-030-37078-7_10.  (Best Student Paper)

[13] Zhao S, Liu K (通讯作者), Deng X. EEG Identification Based on Brain Functional Network and Autoregressive Model[C]//2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2020: 474-479, DOI: 10.1109/DDCLS49620.2020.9275241.

[14] Wang H., Liu K.(通讯作者), Qi F.(通讯作者), Deng X., Li P. (2021) EEG-Based Emotion Recognition Using Convolutional Neural Network with Functional Connections. In: Sun F., Liu H., Fang B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_3. (最佳会议论文提名)Code:deep-bci/ERBCPSI: The code for "EEG-based Emotion Recognition Using Convolutional Neural Network with Functional Connections" (github.com)

[15] Qi F., Wu W. (通讯作者)Liu K. (通讯作者), Yu T., Cao Y. (2021) A Logistic Regression Based Framework for Spatio-Temporal Feature Representation and Classification of Single-Trial EEG. In: Sun F., Liu H., Fang B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_36

授权专利

[1] 刘柯,吴萍(本科生),徐铭浩(本科生),寇宇涵(本科生),周璐(本科生),张孝(硕士生);一种基于脑电源成像和正则化共空间模式的情绪识别方法;专利号: ZL 2021 1 0546546.7, 授权日期:2022.7。

[2] 刘柯,黄家璋;一种基于皮层源信号的脑电运动意图识别方法及系统;专利号:ZL 2022102137253, 授权日期:2024-03-22(已转让)。

[3] 刘柯,姚惠铭,邓欣,于洪;基于多任务深度学习的稳态视觉诱发电位目标识别方法,专利号:ZL 2021115197370,授权日期:2024-04-09(已转让)。

[4] 刘柯,黄玉柱;一种基于脑网络和矩阵学习的脑电情绪识别方法,专利号: 202310091388X(已转让)

[5] 刘柯,王珍;一种基于Laplace噪声和Wasserstein正则的多试次EEG源成像方法, 专利号:2023100931676(已转让)


在读学生信息

博一:蒋敉(脑电抑郁症精准诊断)

研三:朱雯睿(脑电情绪解码)、佟雨桐(脑电抑郁症精准诊断)、江航(脑电溯源分析)、孙立龙(脑电疲劳检测)、周晓林(多模态讽刺检测)、姚杰

研二:李浩源(脑电抑郁症精准诊断)、徐瑞(脑电精分数据分析)、李安(脑电溯源分析)、王赈(脑电精细运动想象解码)、王华渝(脑电溯源分析)、任豪坤(脑电图像重构)

研一:成天宇、刘丽英、钱正雄、陈绘旭、伍聪、唐杰


毕业学生信息

2025届:杨焘(优秀硕士学位论文,上海交通大学攻读博士学位)、杨一哲(华南理工大学攻读博士学位)、张伟华南理工大学攻读博士学位、罗馨(重庆市第一实验中学校)、王亚丽(引望)

2024届:彭澍(优秀硕士学位论文,香港理工科研助理)、邢欣(字节跳动)、张馨月(华为)、杨虎(重庆安全职业技能学院(专任教师))

2023届:杨明朝(石化盈科信息技术有限公司)、赖琴(重庆长安望江工业集团有限公司)、王珍(长安汽车)、黄玉柱

2022届:杨东(去哪儿旅行)、黄家璋(黄岛区第三人民医院)、姚惠铭(北京虾皮)、杨启宏(用友烟草软件

2021届:李振华(优秀毕业生,成都深地领航能源科技有限公司)、许芙蓉(优秀毕业生,河北科技学院(专任教师))、王鸿博(恒玄科技(上海)股份有限公司)、张孝(中移在线服务有限公司)、赵思佳(电科网安)



  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • 脑信号分析,脑机接口,脑电源成像,贝叶斯概率推断,凸优化